
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04425-3

1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs 
by improving memory access efficiency

En‑Ming Huang1 · Jerry Chou1

Accepted: 22 February 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2022

Abstract
This work aims to improve the GPU performance for solving the 0/1 knapsack prob-
lem, which is a well-known combinatorial optimization problem found in many 
practical applications, including cryptography, financial decision, electronic design 
automation, computing resource management, etc. The knapsack problem is NP-
hard, but it can be solved efficiently by dynamic programming (DP) algorithms in 
pseudo-polynomial runtime. The DP knapsack algorithm on GPUs has been pre-
sented. However, as the modern GPU architecture provides much higher computing 
throughput than its memory bandwidth, previous work is bounded by the data access 
time on GPU memory because its CGMA  (Compute to Global Memory Access) 
ratio is 1, which means every computing operation involves one memory access 
on average. To address the problem, an innovative approach called Multi-Class 0/1 
Knapsack Problem (MCKP), whose items can be classified into groups with equal 
values or weights is proposed in this paper. By reconstructing the DP equations for 
solving MCKP, it is able to explore data parallelism and reusability across threads. 
This made it possible to optimize the computation across iterations  (i.e., items), 
and significantly improve the CGMA ratio by 5-fold after exploring the use of GPU 
shared memory and registers for reused data. We extensively analyze the perfor-
mance of our approach on two modern GPU models, NVIDIA Tesla V100 and RTX 
3070. Compared to the runtime of previous work, our approach achieves up to 8x 
and 18x speedup on V100 and RTX 3070 respectively, the latter one being a GPU 
with lower memory bandwidth. In addition, by comparing the two speedups, we 
found that we are able to achieve more efficient computing usage when the memory 
bandwidth is limited such as RTX 3070.

 *	 Jerry Chou 
	 jchou@lsalab.cs.nthu.edu.tw

	 En‑Ming Huang 
	 emhuang@m109.nthu.edu.tw

1	 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04425-3&domain=pdf


	 E.-M. Huang, J. Chou 

1 3

Keywords  GPU · Parallel computing · Knapsack problem · Performance 
optimization

1  Introduction

GPUs are highly parallel, many-core architectures that can provide a massive amount 
of compute throughput compared to the traditional CPU processors. According to 
the TOP500 list released in June 2021  [8], 6 of the top10 supercomputers in the 
world are based on GPUs. For instance, the second-ranked machine, Summit [21], 
has 27,648 NVIDIA Tesla V100 GPU cards installed on 4,608 nodes to provide 
148,600 TFLOPS  (Tera Floating-Point Operations per Second) performance. The 
latest announced NVIDIA A100 GPU [19] achieves 19.5 TFLOPS peak single-pre-
cision performance and 48.8 GFLOPS per watt energy efficiency. Software stacks 
like CUDA, which is a parallel computing platform providing API libraries, com-
piler, runtime, and GPU driver for NVIDIA GPU accelerators, further improve the 
programmability of GPUs for general-purpose processing by allowing applications 
to offload their compute-intensive workloads to GPUs for acceleration. Compared to 
a high-end multi-core CPU, the GPU performance gain is rather one order of mag-
nitude, such as artificial intelligence  [38] and scientific computing  [9]. Therefore, 
accelerating applications on GPUs are an active and crucial topic.

In this work, we aim to optimize the acceleration of the famous 0/1 knapsack 
problem on a single GPU. Given a set of items, each with a weight and a value, a 
knapsack problem is to choose a subset of items, such that the total value is maxi-
mized, while the total weight is less than the capacity of the knapsack. There exist 
several variants and extensions of the knapsack problem. The most common prob-
lem is the 0/1 Knapsack problem, where each item can only be selected at most once 
and fractional selection of items is not allowable. The knapsack problem is one of 
the most important combinatorial optimization problems. It has a lot of practical 
applications, including cryptography [23], financial decision [24], electronic design 
automation [16], computing resource allocation [10], and power management [12], 
to name a few. It also commonly appears as a subproblem in analysis and solving of 
more complicated problems. However, the knapsack problem is known to be NP-
hard  [6]. Thus several heuristics and approximation schemes, such as firefly algo-
rithm [7] and genetic algorithm [25] have been proposed to find near-optimal solu-
tions in polynomial time. Dynamic programming [1, 31] is also commonly used to 
solve the problem because it can find the optimal solution in pseudo-polynomial 
runtime, which is not only polynomial in the numeric value of the number of items 
but also in the range of data (i.e., the knapsack capacity).

In sum, our paper made the following contributions:

–	 We formally defined the Multi-Class 0/1 Knapsack Problem (MCKP).
–	 We investigated and analyzed the performance issue of the MCKP solutions 

on GPUs.
–	 We provided the CGMA analysis to prove the problem is memory-bound.



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

–	 We proposed a novel approach to optimize the performance by reconstructing 
the algorithm to reduce computations.

–	 We proved the correctness of our algorithm reconstruction and analyze the 
algorithm complexity.

–	 We evaluate the performance improvement of our algorithms on two latest GPU 
architecture and discuss the impact of the change of GPU architecture.

–	 Our work demonstrates the performance of MCKP algorithm can still be 
improved on GPU. By further improving the computation time of the optimal 
algorithm, it provides a more attractive option for people to solve the exact 
MCKP problem in practice.

This paper focuses on optimizing the GPU implementation of the dynamic program-
ming  (DP) algorithm for the 0/1 knapsack problem. The DP knapsack algorithm 
recursively fills in a matrix M, where M[i][j] is a subproblem that finds the maximal 
value obtained with knapsack capacity j using the first i items. Hence, the optimal 
solution of a problem with knapsack capacity C and N items can be obtained when 
M[N][C] is computed. The method to map the DP knapsack algorithm on GPUs is 
first presented by Boyer et al  [3]. In order to match the SIMT (Single Instruction, 
Multiple Threads) programming model of GPUs and resolve the data dependency 
among threads, it parallelizes the computations of M in each row as a “kernel”, 
which is a group of thread blocks that can be executed in an independent and paral-
lel manner on GPUs. While this method is commonly mentioned by other GPU opti-
mization papers [22, 26], it is found that its performance acceleration is limited on 
GPU architecture for the three reasons discussed below.

First, launching kernels requires CPU-GPU synchronization and leads to perfor-
mance deterioration [37]. Boyer’s method has to launch a kernel for each row (i.e., 
item). In other words, n kernels must be launched for a problem instance with n 
items. Second, Boyer’s method is bounded by the memory access bandwidth. 
According to our analysis, the CGMA (Compute to Global Memory Access) ratio 
of Boyer’s method is only 1, which means every floating-point computing opera-
tion requires one access to the global memory  (i.e., an off-chip memory in GPU). 
However, the computing throughput of GPUs is much higher than its global mem-
ory bandwidth. Lastly, the GPU architecture does offer an on-chip  Shared Memory 
installed in each multiprocessor to provide fast data access and avoid global memory 
access [35]. Furthermore, the data must be copied from global memory in the first 
place, so only kernels with reused data can benefit from shared memory. Unfortu-
nately, Boyer’s method limits the computation of a kernel to a single row, so no 
reused data exists.

To overcome the aforementioned problems, this work aims to optimize the per-
formance for solving the 0/1 knapsack problem that contains classes of items with 
the same value  (or weight). Such problem instances are commonly seen when the 
item’s values (or weights) are bounded within a range smaller than the number items 
or when they are divided into a set of classes, such as the application described in 
[12]. We name such 0/1 knapsack problem as the Multi-Class 0/1 Knapsack Prob-
lem  (abbreviated to MCKP) and propose a technique to group the computations 
across multiple rows  (or items) in a single kernel. A new DP equation to solve 



	 E.-M. Huang, J. Chou 

1 3

such problem is proposed. It enables several optimizations to reduce the number of 
launched kernels from one per item to one per group and exploit the reused data 
between rows  (i.e., items) to utilize the shared memory. The CGMA ratio of our 
GPU code is increased from 1 to 5. The experiments are conducted on two modern 
GPU models show that compared to the runtime of Boyer’s method, our approach 
achieved up to 8x and 18x speedups respectively on Tesla V100 and RTX 3070. 
Our approach shows good scalability with greater speedup improvements under 
larger problem scales. Finally, we show that the optimized implementation is able 
to overcome the memory bottleneck issue and achieve better compute performance 
on RTX 3070 over V100, where RTX 3070 has higher compute performance but 
lower memory bandwidth. All these performance results and the metric measure-
ments reported from NVIDIA profilers prove our approach successfully maximized 
the GPU throughput by minimizing the memory overhead.

The rest of the paper is structured as follows. Section  2 discusses our related 
work. Section 3 introduces the background and challenges of GPU programming. 
Section 4 explains the existing CPU-based and GPU-based algorithms for 0/1 knap-
sack problem. Our proposed solution is described in Sect. 5 and evaluated in Sect. 6. 
Finally, Sect. 7 concludes the paper.

2 � Related work

The knapsack problem is used in a wide range of application domains. In security 
domain, the Merkle-Hellman knapsack cryptosystems are one of the earliest pub-
lic key cryptosystems  [23]. They use a public set of weights ( ai,⋯ .an) to encode 
a message (xi,⋯ .xn), xj ∈ {0, 1} for 1 ≤ j ≤ n into a encoded message s. Hence, an 
eavesdropper must solve the intractable knapsack problem to recover the message. 
Nevertheless, a transformed knapsack problem can be easily solved in polynomial 
time with a simple greedy algorithm if receivers have a private key (superincreasing 
sequence). The 0/1 knapsack problem has also been used extensively in the struc-
turing of financial planning problems [24], such as budgeting, where a firm needs 
to choose among a subset of a portfolio of projects (i.e., item) under a fixed budget 
constraint (i.e., knapsack capacity). The cost and profit of a project are the weight 
and value of an item. Scheduling problems in various application domains can also 
be solved after being mapped to a 0/1 knapsack problem. For instance, Liu et al. [16] 
use knapsack algorithms to solve a DVS scheduling problem on multi-core embed-
ded systems; Kumaraguruparan et  al.  [12] uses knapsack algorithms to schedule 
residential appliances’ power usage in a dynamic pricing smart grid system. Last 
but not least, Kelly [10] shows that the general discrete computational resource allo-
cation problem can also be mapped to a knapsack problem. Many of these map-
ping problems have the property of restricting their item weight or value in a set of 
classes and thus match our Multi-Class 0/1 knapsack problem definition. Even if the 
problems cannot be directly matched, we believe our proposed techniques for per-
formance analysis and optimization can benefit the field for solving these problems 
as well.



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

Many heuristic algorithms based on search optimization have been proposed to 
find near-optimal solutions for the knapsack problem in polynomial time, such as 
firefly algorithm [7] and genetic algorithm [25]. In particular, many attempts have 
been made to implement and optimize the branch-and-bound (BB) algorithms [2, 
4, 13, 27, 28] on GPUs. The BB algorithms are suitable for GPUs because the 
traversing paths can be broken into independent subproblems and processed in 
parallel. However, the main challenge of BB algorithms is to minimize the data 
transfer time and synchronization between GPUs and CPUs, because the coordi-
nation among subproblems must be done by the CPU. Therefore, BB and DP are 
different type of algorithms and have their own performance optimization chal-
lenges. The main advantage of BB over DP is that the time complexity and mem-
ory usage of BB does not grow proportionally to the knapsack capacity. Hence, 
BB algorithms can be more efficient for solving the problem instances with large 
knapsack capacity. However, search optimization algorithms often require careful 
parameter tuning to find a better approximation solution in reasonable time con-
straints. Therefore, both DP and other heuristic algorithms are commonly used 
and studied in practice.

While the dynamic programming (DP) solution for the knapsack problem has 
been widely used and applied, only a few works discuss its implementation on 
different parallel processor architectures, such as GPUs. Ulm and Baker  [33] 
solved 2D knapsack problem on SIMD computers using an associative com-
puting model. Nawaz et  al.  [18] proposed a general strategy for implementing 
DP algorithms on FPGA. Lin and Storer  [15] improved the divide-and-conquer 
hypercube algorithm proposed by Lee et al.  [14] on a NCUBE hypercube com-
puter. Not until recently, Boyer et  al.  [3] described the first implementation on 
GPUs in literature. Boyer’s method is also mentioned by O’Connell and Mum-
ford [22] for discussing the general implementation of DP algorithms on GPUs. 
Boyer et al. [3] also proposed a data compressing strategy to store the result vec-
tor of choosing decisions for minimizing the memory bandwidth usage between 
CPU and GPU. In contrast, our work doesn’t consider the result vector and aim to 
optimize the performance for computing the maximum return value instead. The 
closest work to our paper is Suri et al.  [30], which used similar shared memory 
and grouping strategy to solve the multiple-choice knapsack problem on GPUs. 
Nevertheless, the multiple-choice knapsack problem allows an item to be selected 
multiple times in the solution. Most recently, there are still studies to discuss the 
parallel knapsack algorithm on CPU [31] and GPU [29], respectively. But none 
of them attempted to optimize the performance by constructing the DP algorithm 
like our approach.

Lastly, there are several studies discussing the methods to analyze the GPU per-
formance. Wang and Chu [34] proposed a model to estimate the execution time of 
GPU kernels with both core and memory frequency scaling. Konstantinidis and 
Cotronis [11] demonstrate a new model for visual performance insights and per-
formance prediction method for GPU kernels. Roofline Model [36] and instruction 
Roofline Model for GPU [5] was proposed to provide an intuitive approach to iden-
tify performance bottlenecks and guide performance optimization. In this work, we 
analyze the performance based on CGMA  (Compute to Global Memory Access) 



	 E.-M. Huang, J. Chou 

1 3

ratio as an theoretical method to analyze the performance bottleneck. While it is also 
possible to analyze the performance of our problem using other measurement meth-
ods, additional efforts on code profiling or hardware control may be required. There-
fore, it could be our future work to analyze the GPU performance of our problem in 
more depth and identify other optimization opportunities.

3 � Background of GPUs

While our work is based on the NVIDIA GPUs and CUDA programming lan-
guage, our approach can also be implemented by different programming lan-
guages, such as OpenCL or OpenACC, for GPUs from other vendors with 
similar hardware architecture and programming models. Below, the necessary 
background of GPUs for introducing our approach is provided. For a complete 
description of CUDA, we refer readers to the NVIDIA programming guide [20].

GPUs are highly parallel, many-core architectures that can provide a massive 
amount of computing throughput and higher power efficiency then the CPU pro-
cessors. However, GPUs were considered as specialized processors for graphic 
processing tasks until people started developing the software stack to make GPU 
available for general-purpose computing over the past decade. The most success-
ful and commonly-used software stack is CUDA, a programming platform to ena-
ble the implementation of GPGPU (General Purpose GPU) programs on NVIDIA 
hardware.

CUDA adopts a Single-Instruction, Multiple-Thread (SIMT) programming 
model to run parallel code on a GPU that is consisted of several multiprocessors. It 
allows programmers to offload code from CPU, the so-called host, to GPU, the so-
called device, by executing kernel functions which launch a group of thread blocks 
called “grid”. The blocks of a grid are dispatched to idle multiprocessors and thus 
they must be independent of each other. Only at the end of the kernel execution, 
the threads across the block can be synchronized. On the contrary, the threads of 
a block are executed on a multiprocessor as a group of 32 parallel threads called 
warp. Hence, all threads in a warp should follow the same execution path; other-
wise, code divergence may lead to poor GPU efficiency. Each thread is indexed by 
its unique threadID and blockID, which are often used by programmers to let the 
threads access different data elements and explore data parallelism.

The memory architecture of GPUs is also hierarchical. Each thread has its own 
register and local memory space to store private data. Only the data stored in 
global memory can be visible to all the threads in a CUDA program. However, 
global memory is an off-chip memory space installed outside multiprocessors 
and its access bandwidth is much lower than the register one. To reduce mem-
ory access delay, shared memory is installed on each multiprocessor to provide 
higher access performance than global memory. The data stored in shared mem-
ory is also visible to the threads within the same block. Data must be copied from 
global memory to shared memory before accessing.



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

4 � The 0/1 knapsack problem

The knapsack problem is a well-known NP-hard combinatorial optimization prob-
lem that has been used in many practical applications. Although there exist sev-
eral variants and extensions of the knapsack problem, the 0/1 knapsack problem 
is the classic and the most known form of the problem. First, the formulation of 
the 0/1 knapsack problem is given in this section. Then, introducing the dynamic 
programming  (DP) algorithm for solving the problem. Finally, we explain the 
GPU implementation of the DP algorithm proposed by Boyer et  al. in [3] and 
point out its limitations.

4.1 � Problem formulation

The knapsack problem is defined as follows. Given a knapsack with capacity C and 
a set of N items with each item i having its weight wi and value vi , the goal is to 
determine the number of each item xi to be selected into the knapsack, such that the 
total weight does not exceed C and the total value is maximized. The 0/1 knapsack 
problem further restricts each item can be selected at most once, so the value of xi 
can only be either 0 or 1. The problem can be formulated as the following integer 
programming problem:

4.2 � Dynamic programming

The 0/1 knapsack problem can be solved in pseudo-polynomial time by a dynamic 
programming (DP) algorithm [1] as follows. Let dp[i, j] be the maximum value that 
can be attained with weight less than or equal to j using the first i items. The maxi-
mum value for a problem instance with N items and C knapsack capacity can be 
found at dp[N, C] by solving the following dynamic programming recursion with 
O(N × C) time complexity:

(1)

Input ∶C = knapsack capacity;N = number of items,

wi = weight of itemi;vi = value of itemi.

maximize

N∑
i=1

vixi

subject to

N∑
i=1

wixi ≤ C

xi ∈ {0, 1}, i ∈ {1,⋯ ,N}.

(2)dp[i, j] =

⎧⎪⎨⎪⎩

0, for i = 0

dp[i − 1, j], for i ≠ 0, j < wi

max{dp[i − 1, j], dp[i − 1, j − wi] + vi}, for i ≠ 0, j = wi,⋯ ,C



	 E.-M. Huang, J. Chou 

1 3

4.3 � GPU implementation

The parallel implementation of the above DP algorithm on GPUs is first described 
by Boyer et  al.  [3]. As observed by the calculations in Eq.  2, the data depend-
ency only exists between an element dp[i,  j] and the elements in its previous row 
dp[i − 1, j], j ∈ {0,⋯ ,C} . Because there is no data dependency between the ele-
ments in the same row (i), it is possible to parallelize the computation of each row i on 
GPUs by having each GPU thread with threadID j to compute the value of an element 
dp[i, j]. To break the dependency between rows, a global barrier across all the threads 
must be applied. But there is no GPU instruction for synchronization across multipro-
cessors, it is necessary to decompose the CUDA program into multiple kernels with 
one kernel per row. As kernels are serialized on GPUs for execution, the kernel for 
computing row i will not start before the end of the kernel for computing row i − 1.

The pseudo-code of the CUDA program is shown in Algorithm  1. The problem 
input w and v are the set of weights and values for items 1, ..., N, and C is the knapsack 
capacity. Because only the current row (dp[i]) and the previous row (dp[i − 1] ) in the 
dp matrix are needed for computation, the memory space of the two rows can be reused 
by exchanging the memory pointer of dp0 and dp1 after each iteration. Also, the code 
described by [3] applied Toth’s method [32] to eliminate the computations of certain 
elements in the matrix that never lead to optimal solutions. Toth’s method can also be 
applied to our approach with the same performance improvement. Because it is not rel-
evant to our proposed approach, it is not shown in the pseudo-code for simplicity.

The pseudo-code in Algorithm  1 has the following performance drawbacks: 
First, the number of launched kernels grows proportionally to the number of 
items. Second, shared memory is not used. Third, the kernel is memory-bound, the 



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

CGMA (Compute to Global Memory Access) ratio is 1 as analyzed in Theorem 1. 
Our proposed approach aims to address all the above problems to reduce the execu-
tion time of the algorithm on GPUs.

Theorem 1  The CGMA (Compute to Global Memory Access) ratio of the GPU ker-
nel in Algorithm 1 is 1.

Proof  As shown by the GPU computation in Algorithm 1 (line 13-21) , each thread 
performs a total of 3 computing operations (add * 2 and max), 2 global memory 
reads (at dp0[j] and dp0[j − wi] ), and 1 global memory write (at dp1[j]). Therefore, 
the CGMA (Compute to Global Memory Access) ratio is 1. 	�  ◻

5 � Approach

5.1 � Performance challenges

Although GPUs offer massive computing throughput, optimizing application perfor-
mance on GPUs often encounters the following challenges. We briefly discuss these 
challenges and summarize how they are addressed in this work.

The data dependency constraints among threads To maximize the throughput 
of GPUs, thread blocks are scheduled and executed independently on multiproces-
sors. Therefore, it is the responsibility of programmers to resolve data dependency 
and avoid race conditions. This is also the main reason why not every application 
can achieve the ideal performance acceleration on GPUs. In this work, the paral-
lelization strategy for the 0/1 knapsack problem is also limited by this factor. While 
the traditional GPU implementation can only parallelize computations on each item, 
this work relaxes data dependency constraints to obtain higher parallelism across 
multiple items. Furthermore, we reconstruct the calculations in the knapsack algo-
rithm to eliminate concurrent writes and avoid unnecessary synchronization over-
head among threads.

The synchronization overhead between host (CPU) and device (GPU) GPUs 
have much higher computing throughput than CPUs, so GPUs are running asyn-
chronously to CPUs once kernels are launched on GPUs by CPUs. Hence, any syn-
chronous event between host and device can throttle the performance of GPUs. In 
particular, the synchronization points are often introduced in CUDA program when 
dealing with the kernel launch event and the memory copy event between host and 
device. The limited memory bandwidth between host and device presents a serious 
performance bottleneck for utilizing GPUs, because data is located in CPU memory 
initially. Extensive efforts have been made to increase the bandwidth through new 
interconnect technology like NVLink or to overlap data transfer time with kernel 
execution through asynchronous pipeline strategy like the CUDA Stream. The 0/1 
knapsack problem is suitable for GPU offloading because the data transfer time for 
problem inputs is relatively short compared to the computation time. However, mul-
tiple kernels must be launched to enforce a global synchronization barrier between 



	 E.-M. Huang, J. Chou 

1 3

computing iterations. As a result, the number of launched kernels grows proportion-
ally to the number of items and causes greater performance deterioration. This work 
addresses these issues by minimizing the number of launched kernels and overlap-
ping the data pre-processing time on CPUs with the kernel execution time on GPUs.

The slow access performance on global memory Once kernels are executed 
on GPUs, the global memory access time becomes the main performance bottle-
neck because of the huge performance gap between global memory and comput-
ing cores. Taking the latest A100 GPU as an example, its computing throughput 
for double-precision data is 9.7 TFLOPS, but its global memory access bandwidth 
is only at 1.6TB/s. That implies the time to access an eight bytes double-precision 
floating-point data on global memory is enough to perform almost 50 floating-point 
operations. In other words, the performance of the GPU is likely to be bounded by 
the memory access time unless the ratio between computing and memory access 
can reach 50. Therefore, improving the CGMA (Compute to Global Memory Access) 
ratio is always a key indicator for performance optimization. In this work, the 
CGMA ratio of the original GPU method is improved five-fold after exploiting the 
benefit of shared memory for storing reused data.

Limited memory space Last but not least, the memory space on GPU devices is 
limited compared to CPU hosts. The largest global memory size on any GPU model 
is less than 50GB, and the largest shared memory size shared by a thread block is 
only 48KB. Therefore, the largest problem instance that can be solved on a GPU is 
often restricted by the memory space. In this work, the problem size is assumed to 
fit into the global memory space like all the previous papers [3, 22, 30]. However, 
the shared memory size per thread can be increased with a smaller block size (i.e., 
number of threads per block). Hence, this work also allows users to trade the degree 
of parallelism with the usage of shared memory space to achieve the best overall 
performance.

5.2 � Multi‑class 0/1 knapsack problem

This work aims to optimize the GPU acceleration performance of 0/1 knapsack 
problem with multiple items having the same weight or value. This type of problem 
instance is commonly seen in the following two scenarios. One is when the weight 
and value of items are bounded within a range that is relatively small compared to 
the number of items. The other one is when the weight or value of items can be 
divided into a set of classes in the problem instance, and the number of classes is 
relatively small compared to the number of items. For example, [12] uses 0/1 knap-
sack algorithm to solve a power management problem where the power consump-
tion cost of objects in their problem instance is mapped to the value of items in the 
knapsack problem instance. Because the power consumption cost is modeled by a 
discrete piecewise constant function, only a limited number of item values exist in 
the mapped knapsack problem instance.

A new DP algorithm is proposed called Multi-Class 0/1 Knapsack Prob-
lem  (abbreviated to MCKP) to solve the above 0/1 knapsack problem, which N 



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

items are grouped into M  (M ≤ N ) classes, and all the items in a group have the 
same value (or weight).

All the approaches and proofs discussed in this section can be applied to the 
MCKP problem with classes either on item weight or value. Therefore, the MCKP 
problem with classes on item value is chosen to introduce our approach in the rest of 
the paper and the problem can be formally formulated as follows:

5.3 � DP reconstruction for MCKP

According to the problem definition given in Eq 3, a new DP solution to solve the 
MCKP problem is proposed in this work as Eqs. 4 and 5, with the assumption that 
the items in each group Gi is sorted by their weight in increasing order, and w(i,k) 
denotes the weight of the k-th item in group Gi.

Similar to the DP formulation in Eq. 2, MCKP[i, j] represents “the maximum value 
that can be attained under the knapsack capacity j by choosing the items from 
groups G1 up to Gi . Hence, MCKP[M, C] is the solution of an MCKP problem, when 
the items in all the M groups can be considered without exceeding the knapsack 
capacity C.

The correctness of Eqs. 4 and 5 can be explained intuitively by the reduction 
from Eq 2, as shown in Fig. 1. In the figure, the computation of the MCKP table 
is considered as at row i. Assume the total number of items in G1, ...,Gi−1 is n, and 
the results of the MCKP table at row i − 1 have been computed. Since MCKP is 

(3)

Input ∶C = knapsack capacity;N = number of items;

wi = weight of itemi;vi = value of itemi;

M = number of groups,M ≤ N;

GI = a group of items with the same value;

VI = the value of the items in groupI.

maximize

N∑
i=1

vixi

subject to

N∑
i=1

wixi ≤ C

vi = VI , if i ∈ GI

xi ∈ {0, 1}, i ∈ {1,⋯ ,N}.

(4)

MCKP[i, j] =

{
0, for i or j ≤ 0

max
0≤k≤|Gi|

{MCKP[i − 1, j − sumW(i, k)] + Vi ⋅ k}, for i ≠ 0

(5)sumW(i, k) =

�∑
1≤s≤k w(i,s), for k > 0

0, for k = 0



	 E.-M. Huang, J. Chou 

1 3

still a 0/1 knapsack problem, the table in the left of Fig. 1a shows how the i-th 
row of the MCKP table will be computed according to Eq. 2. Note that because 
each row in the MCKP table contains a group of items, the computation for the 
i-th row of the MCKP table maps to multiple rows  (n + 1, ..., n + ‖Gi‖ ) in the 
original DP table. The red arrows in the table indicate the computations of Eq. 2 
for computing the entry in the bottom right corner. As mentioned above, Eq. 2 
intends to enumerate all the possible combinations of choosing the items in group 
Gi . For instance, Gi has 3 items in Fig. 1, so after three iterations, the results of 
8  (= 23 ) possible results are computed as indicated by the tuple of three binary 
values, {b1, b2, b3} , shown in the first row of the table where bx = 1 if the x-th 
item in group Gi is chosen.

In comparison to the result of Eq.  2 in Fig.  1a, the computation of the 
MCKP algorithm according to Eqs. 4 and 5 is represented in Fig. 1b. Our pro-
posed MCKP algorithm does not enumerate all the combinatorial results from 
the item selections in group Gi . Instead, only the results from selecting the top 
k (k ∈ ℤ

+ + {0} ) lightest items in a group are evaluated. This is because any deci-
sion that does not select the top k lightest items in a group cannot result in a bet-
ter solution than our proposed MCKP algorithm as proven in Theorem 2. In order 
to compute the MCKP table more efficiently, the items in a group are sorted by 
their weight in increasing order, so the first k items are also the lightest items in 
a group. Therefore, Eq. 5 computes the total weight of the top k lightest items, 
and Eq. 4 computes the total value of selecting the top k selections from group 
Gi under a capacity constraint. Finally, the maximum value from the results of all 
possible k values determines MCKP[i, j]. For instance, Fig. 1b shows that the pro-
posed MCKP algorithm only needs to evaluate and compare four possible results 
from selecting the top k (k = 0, 1, 2, 3) items from a group, not all the 8  (= 23 ) 
combinatorial results from 3 group items. Therefore, our approach not only sig-
nificantly reduces the computation complexity but also enables several perfor-
mance optimization techniques on GPUs, as detailed in Sect. 5.5.

Theorem 2  Our proposed MCKP algorithm can obtain the optimal solution because 
any decision that does not select the top k (k ∈ ℤ

+ + {0} ) lightest items in a group 
cannot result in a better than the MCKP algorithm.

(a) (b)

Fig. 1   The reduction process from the original DP algorithm (Eq. 2) to the MCKP DP algorithm (Eqs. 4 
and 5) for computing the results of the MCKP table at row i 



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

Proof  Assume S is an optimal solution that does not select the top k (k ∈ ℤ
+ + {0} ) 

lightest items in a group. That implies S selects an item x from a group Gi , where 
exist another item x� ∈ Gi whose weight is smaller than x  (i.e., wx > wx′ ) but not 
selected in S. Since x and x′ are both from the same group, they must have the same 
value (i.e., vx = vx� ). Therefore, another optimal solution S′ with the same total value 
of S is obtained by replacing x with x′ in S (i.e., S� = S�{x} ∪ {x�} ) without exceed-
ing the knapsack capacity limit. Accordingly, for an optimal solution that does not 
select the top k lightest items in a group, we always find another optimal solution 
that selects the top k lightest items in the group by repeatedly replacing the selected 
items with another non-selected item with less weight in the same group. Hence, 
by evaluating all the solutions that select the top k (k ∈ ℤ

+ + {0} ) lightest items in 
every group are enough to obtain the optimal solution. 	�  ◻

Theorem  3  The time complexity of our proposed MCKP algorithm is 
O(NC + N logN) ≈ O(NC) since C ≫ logN in most of the cases.

Proof  The computation of the DP table is same as the original DP approach 
of 0/1 knapsack problem which is O(NC) . Sorting items in the same group 
has the time complexity of O(N logN) . In result, the time complexity is 
O(NC) +O(N logN) = O(NC + N logN) . However, C is larger than logN in most 
of the cases, so it can be written as O(NC + N logN) ≈ O(NC) . 	�  ◻

5.4 � GPU implementation

The pseudo-code of our proposed MCKP algorithm on GPUs is shown in Algo-
rithm 2. The CPU code is similar to Boyer’s implementation shown in Algorithm 1. 
Line7-9 is added to classify the items into groups by their values, and Line13 is 
added to sort the item in a group by their weight in increasing order. Then, a kernel 
is launched for each group only, instead of each item. Note that all the weights of 
items in the group, G[v], must be passed to GPU through global memory. In con-
trast, the GPU code is completely rewritten according to the reconstructed equations 
in Eqs.  4 and 5. First, in Line24, a chunk of shared memory is allocated in each 
thread block to load the item weights, W (i.e., G[v] in CPU), from global memory to 
shared memory. If the number of threads per block (i.e., blockSize) is less than the 
number of items in the group (n), each thread is used to move multiple elements of 
W to shared memory in Line26-28. Line29–38 implements Eqs. 4 and 5. Specifi-
cally, Line 32 implements Eq. 5 to compute sumW, and line 36 implements Eq. 4 to 
keep maxV, which is the max of all the top k selection results with k varied from 1 
to the group size n. Finally, maxV is stored to the entry of the MCKP DP table cor-
responding to the threadID.



	 E.-M. Huang, J. Chou 

1 3

5.5 � Performance optimization

Our proposed MCKP algorithm enables several-performance optimizations on 
GPU architecture. We discuss each of them as follows:

Reduce the number of kernels and increase the data parallelism Clearly, 
the number of the launched kernels is reduced from N to M, where N is the num-
ber of items, and M is the number of groups. Moreover, by exploring the data 
parallelism, each kernel can perform more computation workloads without syn-
chronizing with the CPU. With the features of data parallelism and reusability 
across threads, we introduce an optimization technique by using shared memory.



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

Utilize shared memory Boyer’s method did not utilize the shared memory on 
GPUs, because there is no reused data within a kernel. On the contrary, after 
grouping the computation of multiple items in a single kernel, the weight of items 
is reused among threads to compute sumW in Line32 of Algorithm 2. Hence, the 
array of item weight, W can be moved to the shared memory for reducing the 
number of global memory access.

Overlap CPU time with GPU time In order to make the computation on 
GPUs more efficient, the items in a group must be sorted in our proposed MCKP 
algorithm. The sorting operation can be done on CPUs or GPUs. The reason this 
work decided to implement it on CPU is that it can take advantage of the asyn-
chronous call of kernel launch to overlap the sorting time of group Gi+1 with the 
kernel execution of group Gi , thus, resulting in reducing the GPU computation 
time without adding overhead to the overall execution time.

Avoid concurrent writes When parallelizing the computation for computing 
the value dp1 from dp0 in the MCKP algorithm, threadID can be used to denote 
the column index of dp0 or dp1. When threadID is used as the column index of 
dp0, dp0[j] is used to update dp1[j + sumW] for all possible values of sumW (i.e., 
dp1[j + sumW] = max{dp0[j + sumW], dp0[j] + v ⋅ k} ). On the other hand, when 
threadID is used as the column index of dp1, dp1[j] is updated by the values of 
dp0[j] and dp0[j − sumW] (i.e., dp1[j] = max{dp0[j], dp0[j − sumW] + v ⋅ k} ). The 
first method involves concurrent writes among threads, so it requires the use of 
atomic operation on max to prevent race conditions. As the second method only 
involves concurrent reads among threads without race condition, the implementa-
tion in Algorithm 2 uses threadID as the column index of dp1 not dp0 to avoid 
concurrent writes and the use of atomic operation.

Minimize global memory access Global memory access is the main perfor-
mance bottleneck for solving the knapsack problem on GPUs. In Boyer’s method, 
the computing results of each iteration (i.e., item) must be written to the DP table on 
global memory. In contrast, the optimized code only needs to write the computing 
results of a group of items to the DP table on global memory. The temporal comput-
ing results from each item in a group are stored in a register variable maxV instead. 
Therefore, the CGMA ratio of the GPU implementation of our MCKP algorithm can 
also be significantly increased from 1 to 5 as proven in Theorem 4.

Prune GPU computations In Line33-34 of Algorithm 2, the loop is broken 
when sumW < j , which means the aggregated weight of the top k selected items 
already exceeds the current knapsack capacity j. Thus, there is no need to com-
pute the results of selecting even more items. In other words, our proposed MCKP 
algorithm provides the opportunities to prune the computations and reduce the 
overall runtime.

Theorem 4  The CGMA (Compute to Global Memory Access) ratio of the GPU ker-
nel in our proposed MCKP algorithm shown in Algorithm 2 is approximately 5.

Proof  The operations in the kernel code of Algorithm 2 contain two loops. The first 
loop in Line26–28 is for loading shared memory, and the second loop in Line31–37 



	 E.-M. Huang, J. Chou 

1 3

is for computing the result. The number of iterations for the first loop is ⌈ n

blockSize
⌉ , 

while the number of iterations for the second is n. While the value of blockSize is 
normally in the range of hundreds to thousands, only the CGMA ratio of the second 
loop is needed to consider.

In each loop iteration  (Line23–39), a thread performs 5 operations, including 
1 multiplication  (i.e., v ⋅ k in Line36), 1 max  (i.e., in Line36), 1 subtraction  (i.e., 
j − sumW in Line36) and 2 additions  (i.e., sumW + SMEM[k] in Line32 and 
dp0[] + vk in Line36), while only issue 1 global memory access on dp0[j − sumW] . 
Therefore, the CGMA ratio is approximately 5.

Overall, it is easy to see that the performance gain of our MCKP algorithm 
over Boyer’s method grows greater when the size of the group for each item class 
becomes larger. Also, even in the worst case, when no items share the same weight 
or value, our MCKP algorithm simply becomes the same as Boyer’s method. There-
fore, our approach should never perform worse than Boyer’s method.

6 � Experiment evaluation

6.1 � Setup

We conducted the experiments on two different GPU machines. One is a desk-
top computer equipped with an Intel Core i9-10900 10-Core 4.6GHz CPU and an 
NVIDIA RTX 3070 GPU card. The other is a GPU node from the TAIWANIA 2 
supercomputer [17] equipped with two Xeon Gold 6154 18-Core 3GHz CPUs and 8 
Tesla V100 SXM2 GPUs. Their detailed hardware specifications are summarized in 
Table 1. Note that the computing performance of RTX 3070 GPU (20.3TFLOPS) is 
higher than the V100 GPU (15.7FLOPS) because the Ampere architecture of RTX 
3070 is newer than the Volta architecture of V100. On the contrary, the (global) 
memory bandwidth of RTX 3070 (448GB/s) is less than half of the bandwidth of 
V100 (900GB/s). Therefore, comparing the results from the two GPU architectures 
can further demonstrate the performance impact of MCKP on computing and mem-
ory access. The software environment on both machines is kept the same, where 
the programming tools installed on both machines are CUDA 11.2 and GCC 10.2. 
For both GPUs, the shared memory size is 49152 Bytes, and the maximize thread 
block size is 1024. We use the largest thread block size in our experiments because 
a larger block size can reduce the number of data item that needs to be moved from 
the global memory to the shared memory per thread, and thus leads to the best exe-
cution performance for our algorithm on GPUs. Our GPU code implementation also 
optimized by using all the basic GPU programming techniques, including unrolling, 
blocking, memory coarsening, etc. Our experiments only focus on evaluating the 
performance improvements from our algorithm design.

The benchmarking datasets used in our evaluations are shown in Table 2. In the 
default setting, the number of items is 106 , and they are classified into 103 groups 



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

Ta
bl

e 
1  

T
he

 h
ar

dw
ar

e 
sp

ec
ifi

ca
tio

n 
of

 G
PU

 m
ac

hi
ne

s i
n 

ou
r e

xp
er

im
en

ts

M
ac

hi
ne

H
os

t
G

PU
 (D

ev
ic

e)

C
PU

 M
od

el
PC

Ie
M

od
el

A
rc

hi
te

ct
ur

e
C

or
es

FP
32

 p
ea

k 
op

 p
er

 se
c

M
em

or
y 

si
ze

 
(G

B
)

M
em

or
y 

ba
nd

w
id

th
Pr

ic
e 

(U
SD

)
Re

le
as

e 
ye

ar

D
es

kt
op

C
or

e 
i9

-1
09

00
 

@
4.

6 
G

H
z

G
en

3x
8

RT
X

30
70

A
m

pe
re

58
88

20
.3

T 
@

17
25

M
H

z
8

44
8 

G
B

/s
50

0
20

20

TA
IW

A
N

IA
 2

X
eo

n 
G

ol
d 

61
54

 
@

3G
H

z
G

en
3x

8
V

10
0 

SX
M

2
Vo

lta
51

20
15

.7
T 

@
13

80
M

H
z

32
90

0 
G

B
/s

>
10

,0
00

20
17



	 E.-M. Huang, J. Chou 

1 3

by the item values. The weight and value of items are generated independently by a 
random function with values between 1 and 1,000. To control the number of groups, 
we randomly mapped items into groups, then randomly assigned the value of 
groups. The knapsack capacity is determined by the total weight of all items divided 
by a constant factor 10. For each experiment, the results from 5 randomly generated 
problem instances were collected and the average numbers reported below.

While Boyer’s method is the only known method to implement the DP algorithm 
for 0/1 knapsack problem, our proposed MCKP method improves its performance 
through three main optimizations. The first is “Grouping & Pruning”, which groups 
items with the same value to reduce kernels, and prunes the computation within a 
group when sumW < j . Second, “Avoid atomicMax” uses threadID to denote the 
column index of DP1 instead of DP0 thus avoiding concurrent writes and atomic-
Max operations. Third, “Shared Memory” loads item weights into shared memory 
for minimizing global memory access. To show the performance improvement from 
each of these optimizations, we rewrite the program of Boyer’s method and com-
pared to several variants of our method  (MCKP) with different optimization con-
figurations. The name and the setting of our compared methods are summarized in 
Table 3.

6.2 � Performance scalability

The time complexity of 0/1 knapsack problem is known to be O(N ⋅ C) , where N 
is the number of items and C the knapsack capacity. In this set of experiments, we 
observe the performance under varied problem scales by increasing the number of 
items (N) from 106 to 3 × 106 . Because the ratio between the total item weight and 

Table 2   Experimental datasets Parameter Description Default value

N Number of items 106

M Number of item groups 103

w
i

Weight of the i-th item rand(1, 103)

v
i

Value of the i-th item rand(1, 106) in M bins
C Knapsack capacity ∑N

n=1
w
i
∕10

Table 3   The optimization configuration of compared methods

If the optimization is supported in a method, it is indicated by “Yes”; otherwise, it is indicated by “No”

Method Configurtion Grouping & 
pruning

Avoid atomic-
Max

Shared memory

Boyer [3] – No No No
MCKP (ours) w/o Opt Yes No No

w/o SharedMem Yes Yes No
– Yes Yes Yes



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

the knapsack capacity (C) is fixed at 10 in our dataset setting, the knapsack capac-
ity in the experiments is also increased linearly to the number of items. Hence, the 
problem complexity grows O

(
N2

)
 in these experiments. Note that the number of 

GPU threads per GPU kernel is the same as the knapsack capacity (C) in all GPU 
methods, so the parallelism of GPU codes also increases linearly to the number of 
items.

Figure 2 shows the runtime comparison between Boyer’s method and the MCKP 
algorithms under 106 ∼ 3 × 106 items. The corresponding runtime speedup of 
MCKP over Boyer’s method is plotted in Fig. 3. From these plots, we have the fol-
lowing key observations.

First, as expected from the complexity analysis above, the runtime of all meth-
ods increases as the problem scale grows with more items. However, as observed in 
Fig. 2, the increasing rate is over linear, especially under larger scales. We believe 
this is caused by the growing resource contention from larger problem scales 

(a) (b)

Fig. 2   Runtime comparison under 106 ∼ 3 × 106 items

(a) (b)

Fig. 3   The runtime speedup over Boyer’s method under 106 ∼ 3 × 106 items



	 E.-M. Huang, J. Chou 

1 3

when the total number of threads per kernel increases. As GPU is known to maxi-
mize its throughput and efficiency by multiplexing its hardware resources among 
threads, although more threads are used for a larger problem size, the GPU hard-
ware resources, such as GPU memory bandwidth and cores, are still limited. Hence, 
higher resource contention and greater performance degradation are expected for the 
kernels with more threads. As a result, all GPU methods cannot achieve the ideal 
linear scalability in practice.

Second, regardless of the problem scale, MCKP always achieves higher perfor-
mance improvement over Boyer’s method. Take the result at N = 106 as an example. 
MCKP w/o Opt achieves 3.5x performance speedup on RTX 3070, and 2.2x per-
formance speedup on Tesla V100. By avoiding the atomicMax operation, MCKP 
w/o SharedMem further increases the speedup on RTX 3070 GPU and Tesla V100 
GPU to 5.4x and 4.1x, respectively. After all three optimizations, including shared 
memory, are applied, the speedup of MCKP, can further reach 11.1x and 5.1x on 
RTX 3070 GPU and Tesla V100 GPU, respectively.

Third, the speedup of MCKP over Boyer’s method should only be affected by 
the average group size of items theoretically. This is because the computations for 
both MCKP and Boyer’s method are expected to grow linearly to the number of 
items and the size of knapsack capacity. That is why we also observed that the per-
formance speedup of our method without optimization and without shared memory 
roughly stays constant across all problem scales, as shown in Fig. 3. However, inter-
estingly, we found that the speedup of MCKP grows like a concave down function 
with a growing improvement rate initially but converges to a constant improvement 
factor at the end. We believe this is the limit of our algorithm since we increase 
the CGMA ratio from 1 to approximately 5, which is proven in Theorem  4. Our 
optimization techniques not only reduce the amount of memory access and com-
putations of GPU kernels but also help alleviate the resource contention on global 
memory and multiprocessor. When the performance speedup is less  (e.g., MCKP 
w/o Opt), the difference of resource contention is limited so that no side effect can 
be observed. However, when the speedup is high enough (e.g., MCKP), the data par-
allelism and reusability help us to gain additional performance improvement. Nev-
ertheless, when the number of items is too large (e.g., over 2.5 × 106 ), the resource 
contention overhead may become too large to be affected by the workload reduction 
from our method. Overall, we observed greater speedup improvement under larger 
problem scales, and the speedup reaches up to 17.5x and 7.6x on RTX 3070 GPU 
and Tesla V100 GPU, respectively.

6.3 � Grouping analysis

The performance of our approach highly depends on the group size of items 
because we aim to explore the data reuse pattern and redundant operations among 
the items in a group. The following is the performance impact of group size on our 
optimizations.



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

Figure 4 shows the runtime speedup of MCKP over Boyer’s method on the data-
sets with varied group sizes. As expected, higher performance improvements are 
obtained under a larger group size, especially when the shared memory is used. 
Moreover, we have observed much larger performance improvements on the RTX 
3070 than the V100, because the limited bandwidth of global memory presents a 
greater performance bottleneck on RTX 3070. The speedup on RTX 3070 and V100 
can reach up to 5.9x and 4.7x, as the group size increases from 1 to 1024. Interest-
ingly, we also have found the performance of MCKP w/o SharedMem could perform 
better than MCKP when the group size is extremely small (≤ 32 ). This is because 
the performance benefited from our approach is not enough to overcome the data 
movement overhead from copying data into shared memory when the group size 
is too small. However, overall, MCKP has comparable or better performance than 
others at any group size. Furthermore, including the worst-case scenario where the 
group size is 1, MCKP still has the same performance as Boyer’s method. Therefore, 
our approach can consistently outperform Boyer’s method.

In order to see if MCKP can be applied to the datasets with classes on either item 
value or item weight, we generated a set of datasets whose item weights and values 
can be classified into m and n groups, respectively. Note that the total number of 
items is fixed in this set of experiments, so fewer groups imply a larger group size as 
well. The runtime of MCKP algorithm with grouping by weight and value on these 
datasets is plotted in Fig. 5 with the x-axis label (m, n). As expected, the runtime of 
MCKP algorithm with grouping by value is only affected by the number of groups 
on item values. By contrast, the runtime with grouping by weight is only affected by 
the number of groups on item weights. Therefore, the results from grouping by value 
and grouping by weight are basically reversed in the plot. Depending on the dataset 
characteristics, we can apply different grouping strategies to obtain the best perfor-
mance improvement.

Finally, we evaluate the overhead of CPU sorting from our approach under var-
ied group sizes and prove the CPU sorting time can be overlapped and hidden by 
the GPU time. Noted, the GPU time includes the data transfer time for moving the 

(a) (b)

Fig. 4   The runtime speedup over Boyer’s method under varied group sizes from 1 to 1024



	 E.-M. Huang, J. Chou 

1 3

data items from the CPU memory to the GPU global memory. Since our algorithm 
doesn’t change the amount of data movement between CPU and GPU, the data 
transfer time is only a constant overhead ( < 5% ) in our experiments. As shown by 
Algorithm 2, MCKP does introduce additional item sorting time on CPU, the sort-
ing growing O(n log n) to the group size n. On the other hand, the GPU time for pro-
cessing a group of items grows only O(n) . Therefore, as shown by the profiled time 
plotted in Fig. 6, both CPU time and GPU time grow under a larger group size and 
the growing rate of CPU time is faster than GPU time. Despite that, the CPU sort-
ing time can be overlapped by the GPU time through CUDA’s asynchronous kernel 
execution. Therefore, the total runtime is almost the same as the GPU time at any 
group size in the plot, which implies the CPU time can be completely hidden in our 
approach as long as the CPU time is less than the GPU time. Note that RTX 3070 
and V100 are both one of the fastest GPU models, and we didn’t parallelize the sort-
ing code on CPUs. Hence, if a slower GPU model is used, the GPU time is likely to 

(a) (b)

Fig. 5   The runtime of our MCKP algorithm on a set of datasets whose item weights and values can be 
classified into m and n groups, respectively. The number of classes for the weights and values of a dataset 
is varied from 1 to 1024 and labeled by the x-axis (m, n)

(a) (b)

Fig. 6   CPU and GPU compute overlapping



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

be increased and the CPU sorting time can more easily be overlapped. Therefore, the 
CPU sorting time won’t cause any performance overhead in MCKP.

6.4 � GPU architecture comparison

In Sect.  6.2, we discuss the performance impact of individual optimization tech-
niques on different GPU architectures. As shown in Fig.  3, which summarize the 
performance gain from each optimization technique by the gap of the speedup 
between compared methods; clearly, the shared memory technique provides a much 
greater performance improvement than the other two optimization techniques on 
RTX 3070 as indicated by the huge gap between MCKP and MCKP w/o Shared-
Mem. This is because the shared memory technique can reduce the number of global 
memory access by five-fold, as proven in Theorem 4. As known from the hardware 
specification in Table 1, RTX 3070 is a mid-end gaming GPU card with the price of 
$500, so it is a memory-bound GPU with much less memory bandwidth than com-
puting capability. Therefore, the shared memory technique can mitigate the memory 
bottleneck problem and deliver much higher computing throughput. While V100 is 
targeted for data center, it has a more balanced computing and memory access per-
formance, so the shared memory technique has a lower performance gain on V100.

Furthermore, we compared the runtime of the exact GPU implementation on 
RTX 3070 and V100 as indicated in Fig.  7. If the speedup of a method is larger 
than 1 in the plot, it means the method is running faster on RTX 3070 than V100. 
As expected, the speedup between the two GPU cards for any method is irrelevant 
to the problem scale because it should only depend on the computing capability of 
the GPU cards. We also found that V100 has better performance than RTX 3070 
for all the methods, except MCKP. It is known that RTX 3070 has better computing 
performance but worse memory bandwidth than V100. Since knapsack DP algo-
rithms are memory-bound applications for GPUs, it is no surprise to see V100 has 
better performance. The speedup of Boyer’s method running on RTX 3070 over 
V100 is nearly equal to 0.5, which matches the ratio of their global memory band-
width ( 900

448
≃ 0.5 ), while the speedup of the MCKP has the average of 1.3, which 

Fig. 7   The speed ratio com-
parison between RTX 3070 and 
Tesla V100. The ratio is defined 
as the runtime on V100 divided 
by the runtime on RTX 3070



	 E.-M. Huang, J. Chou 

1 3

is the ratio of their computing throughput ( 20.3T
15.7T

≃ 1.3 ). By observing the runtime 
ratio of two GPUs, the MCKP method achieved higher performance on RTX 3070 
than V100 what proves our optimizations to be able to solve the memory bottleneck 
problem and allow GPUs with higher computing throughput to deliver better appli-
cation performance.

We also analyzed the performance statistics reported by the NVIDIA CUDA pro-
filers, nvprof on V100 and Nsight Compute on RTX 3070, using the default dataset 
specified in Table 2. The instructions per cycle (ipc) to present the GPU computing 
performance and the load and store throughput on global memory to present the 
memory performance were selected. As shown in Table 4 which reports their per-
formance measurements, we have three improvements. First, the MCKP method sig-
nificantly improves the ipc on both GPU models, which implies the memory access 
overhead is minimized, and computing throughput is maximized. Second, the load 
throughput is increased because the kernel can compute multiple iterations at once; 
this indicates the data parallelism is increased, in contrast with Boyer’s method 
which requires a kernel synchronization between GPU and CPU after each iteration 
that throttles the throughput for both computing and memory access. Last, the store 
throughput becomes lower due to fewer write operations. By writing the temporary 
computing results from each iteration to a register, maxV, instead of global mem-
ory everytime, global memory writes only occur at the end of a kernel execution 
after the computations of multiple iterations. Overall, the profiling results proved 
that our approach can maximize GPU throughput and minimize memory bottleneck 
by reducing the memory access operations and improving the throughput of global 
memory.

7 � Conclusion

This work presents an optimized DP algorithm and implementation to maximize the 
performance for solving Multi-Class 0/1 Knapsack Problem (MCKP) on GPUs. The 
main contribution of MCKP is to explore data parallelism and the reusability across 
threads. Both the computing complexity and runtime performance are compared 
between our proposed approach and the well-known Boyer’s method. We proved 
our method could improve the CGMA (Compute to Global Memory Access) ratio 
5-fold, increasing from 1 to 5. The runtime performance comparison was extensively 
evaluated on two modern GPU models, RTX 3070 and V100. Comparing to Boyer’s 
method, our approach achieved up to 18x speedup on RTX 3070, and 8x speedup 

Table 4   The comparison of 
performance metrics reported by 
the NVIDIA CUDA profilers

GPU Method ipc Load throughput Store throughput

RTX 3070 Boyer 0.15 409 GB/s 186.54 GB/s
MCKP 0.73 3100 GB/s 1.05 GB/s

V100 Boyer 0.94 589 GB/s 279.60 GB/s
MCKP 2.60 2977 GB/s 0.85 GB/s



1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

on V100, and greater speedup improvements can be observed under larger problem 
scales with an increasing number of items and knapsack capacity. According to the 
hardware specification, RTX 3070 has a higher computing throughput but lower 
memory bandwidth than V100. Furthermore, the improvement of our approach is 
also much higher on RTX 3070 than V100 because the memory performance bot-
tleneck problem is worse on RTX 3070 than V100. Therefore, our optimized imple-
mentation successfully achieves better performance on RTX 3070 than V100 after 
having overcome the memory bottleneck. In contrast, Boyer’s method suffers from 
the memory access overhead and cannot obtain better performance on RTX 3070 
than V100. The performance metrics reported by NVIDIA CUDA profilers also con-
firm our approach can significantly increase the instructions per cycle (ipc) on both 
GPU models and improve the memory load throughput while minimizing memory 
write operations. The result of our work demonstrates the importance of addressing 
the memory access overhead on GPUs and provides a more efficient GPU solution 
for solving the 0/1 knapsack problem in a wide range of application domains.

Acknowledgements  We thank to National Center for High-performance Computing (NCHC) for provid-
ing computational and storage resources. We also thank to Prof. Ing-Jer Huang from National Sun Yat-
sen University for providing valuable insights and comments to our work.

References

	 1.	 Bellman R (1966) Dynamic programming. Science 153(3731):34–37. https://​doi.​org/​10.​1126/​scien​
ce.​153.​3731.​34

	 2.	 Boukedjar A, Lalami ME, El-Baz D (2012) Parallel branch and bound on a cpu-gpu system. In: 
2012 20th Euromicro International Conference on Parallel, Distributed and Network-based Process-
ing, pp. 392–398. https://​doi.​org/​10.​1109/​PDP.​2012.​23

	 3.	 Boyer V, El Baz D, Elkihel M (2012) Solving knapsack problems on gpu. Comput Op Res 
39(1):42–47

	 4.	 Carneiro T, Muritiba AE, Negreiros M, Lima de Campos GA (2011) A new parallel schema for 
branch-and-bound algorithms using gpgpu. In: 2011 23rd International Symposium on Computer 
Architecture and High Performance Computing, pp. 41–47. https://​doi.​org/​10.​1109/​SBAC-​PAD.​
2011.​20

	 5.	 Ding N, Williams S (2019) An instruction roofline model for gpus. In: 2019 IEEE/ACM Perfor-
mance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), 
pp. 7–18. https://​doi.​org/​10.​1109/​PMBS4​9563.​2019.​00007

	 6.	 Garey MR, Johnson DS (1990) Computers and intractability; a guide to the theory of NP-complete-
ness. W. H Freeman & Co., New York

	 7.	 Hajarian M, Shahbahrami A, Hoseini F (2016) A parallel solution for the 0-1 knapsack problem 
using firefly algorithm. In: 1st Conference on Swarm Intelligence and Evolutionary Computation 
(CSIEC), pp. 25–30. https://​doi.​org/​10.​1109/​CSIEC.​2016.​74821​34

	 8.	 HPC Advisory Council: The Top 500 List (2021). https://​www.​top500.​org/​lists/​top500/​2021/​06/
	 9.	 Huang S, Xiao S, Feng W (2009) On the energy efficiency of graphics processing units for scientific 

computing. In: 2009 IEEE International Symposium on Parallel Distributed Processing, pp. 1–8. 
https://​doi.​org/​10.​1109/​IPDPS.​2009.​51609​80

	10.	 Kelly T (2005) Generalized knapsack solvers for multi-unit combinatorial auctions: Analysis and 
application to computational resource allocation. In: P.  Faratin, J.A. Rodríguez-Aguilar (eds.) 
Agent-Mediated Electronic Commerce VI. Theories for and Engineering of Distributed Mecha-
nisms and Systems, pp. 73–86. Springer Berlin Heidelberg, Berlin, Heidelberg

https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1109/PDP.2012.23
https://doi.org/10.1109/SBAC-PAD.2011.20
https://doi.org/10.1109/SBAC-PAD.2011.20
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1109/CSIEC.2016.7482134
https://www.top500.org/lists/top500/2021/06/
https://doi.org/10.1109/IPDPS.2009.5160980


	 E.-M. Huang, J. Chou 

1 3

	11.	 Konstantinidis E, Cotronis Y (2015) A practical performance model for compute and memory 
bound gpu kernels. In: 2015 23rd Euromicro International Conference on Parallel, Distributed, and 
Network-Based Processing, pp. 651–658. https://​doi.​org/​10.​1109/​PDP.​2015.​51

	12.	 Kumaraguruparan N, Sivaramakrishnan H, Sapatnekar SS (2012) Residential task scheduling under 
dynamic pricing using the multiple knapsack method. In: 2012 IEEE PES Innovative Smart Grid 
Technologies (ISGT), pp. 1–6. https://​doi.​org/​10.​1109/​ISGT.​2012.​61756​56

	13.	 Lalami ME, El-Baz D (2012) Gpu implementation of the branch and bound method for knapsack 
problems. In: IEEE 26th International Parallel and Distributed Processing Symposium Workshops 
PhD Forum, pp. 1769–1777. https://​doi.​org/​10.​1109/​IPDPSW.​2012.​219

	14.	 Lee J, Shragowitz E, Sahni S (1988) A hypercube algorithm for the 0/1 knapsack problem. J Parallel 
Distrib Comput 5(4):438–456. https://​doi.​org/​10.​1016/​0743-​7315(88)​90007-X

	15.	 Lin J, Storer JA (1991) Processor-efficient hypercube algorithms for the knapsack problem. J Paral-
lel Distrib Comput 13(3):332–337. https://​doi.​org/​10.​1016/​0743-​7315(91)​90080-S

	16.	 Liu H, Shao Z, Wang M, Du J, Xue CJ, Jia Z (2009) Combining coarse-grained software pipelining 
with dvs for scheduling real-time periodic dependent tasks on multi-core embedded systems. J Sig-
nal Process Syst 57(2):249–262. https://​doi.​org/​10.​1007/​s11265-​008-​0315-2

	17.	 National Center for High-performance Computing: TAIWANIA2 (2018). https://​www.​nchc.​org.​tw/
	18.	 Nawaz Z, Stefanov T, Bertels K (2009) Efficient hardware generation for dynamic programming 

problems. In: 2009 International Conference on Field-Programmable Technology, pp. 348–352. 
https://​doi.​org/​10.​1109/​FPT.​2009.​53776​18

	19.	 NVIDIA: NVIDIA A100 datasheet (2020). https://​www.​nvidia.​com/​conte​nt/​dam/​en-​zz/​Solut​ions/​
Data-​Center/​a100/​pdf/​nvidia-​a100-​datas​heet.​pdf

	20.	 NVIDIA: Cuda c++ programming guide (2021). https://​docs.​nvidia.​com/​cuda/​pdf/​CUDA_C_​Progr​
amming_​Guide.​pdf

	21.	 Oak Ridge National Laboratory: SUMMIT (2018). https://​www.​olcf.​ornl.​gov/​olcf-​resou​rces/​compu​
te-​syste​ms/​summit/

	22.	 O’Connell JF, Mumford CL (2014) An exact dynamic programming based method to solve optimi-
sation problems using gpus. In: Second International Symposium on Computing and Networking, 
pp. 347–353. https://​doi.​org/​10.​1109/​CANDAR.​2014.​27

	23.	 Odlyzko AM (1990) The rise and fall of knapsack cryptosystems. In: In Cryptology and Computa-
tional Number Theory, pp. 75–88. A.M.S

	24.	 O’Leary DE (1995) Financial planning with 0–1 knapsack problems, part i: domination results. Adv 
Math Program Financ Plan 4:139–150

	25.	 Pospichal P, Schwarz J, Jaros J (2010) Parallel genetic algorithm solving 0/1 knapsack problem run-
ning on the gpu. In: Proceedings of the 16th International Conference on Soft Computing (MEN-
DEL), pp. 64–70

	26.	 Schryen G (2020) Parallel computational optimization in operations research: a new integrative 
framework, literature review and research directions. Eur J Oper Res 287(1):1–18. https://​doi.​org/​
10.​1016/j.​ejor.​2019.​11.​033

	27.	 Shen J, Shigeoka K, Ino F, Hagihara K (2017) An out-of-core branch and bound method for solving 
the 0-1 knapsack problem on a gpu. In: International Conference on Algorithms and Architectures 
for Parallel Processing, pp. 254–267. https://​doi.​org/​10.​1007/​978-3-​319-​65482-9_​17

	28.	 Shen J, Shigeoka K, Ino F, Hagihara K (2019) Gpu-based branch-and-bound method to solve large 
0–1 knapsack problems with data-centric strategies. Concurr Comput Pract Exp 31(4):e4954

	29.	 Sun X, Wu CC, Chen LR, Lin JY (2018) Using inter-block synchronization to improve the knapsack 
problem on gpus. Int J Grid High Perform Comput (IJGHPC) 10(4):83–98

	30.	 Suri B, Bordoloi UD, Eles P (2012) A scalable gpu-based approach to accelerate the multiple-
choice knapsack problem. In: Design, Automation Test in Europe Conference Exhibition (DATE), 
pp. 1126–1129. https://​doi.​org/​10.​1109/​DATE.​2012.​61766​65

	31.	 Thant Sin ST (2021) The parallel processing approach to the dynamic programming algorithm 
of knapsack problem. In: 2021 IEEE Conference of Russian Young Researchers in Electrical and 
Electronic Engineering (ElConRus), pp. 2252–2256. https://​doi.​org/​10.​1109/​ElCon​Rus51​938.​2021.​
93964​89

	32.	 Toth P (1980) Dynamic programming algorithms for the zero-one knapsack problem. Computing 
25:29–45

https://doi.org/10.1109/PDP.2015.51
https://doi.org/10.1109/ISGT.2012.6175656
https://doi.org/10.1109/IPDPSW.2012.219
https://doi.org/10.1016/0743-7315(88)90007-X
https://doi.org/10.1016/0743-7315(91)90080-S
https://doi.org/10.1007/s11265-008-0315-2
https://www.nchc.org.tw/
https://doi.org/10.1109/FPT.2009.5377618
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://doi.org/10.1109/CANDAR.2014.27
https://doi.org/10.1016/j.ejor.2019.11.033
https://doi.org/10.1016/j.ejor.2019.11.033
https://doi.org/10.1007/978-3-319-65482-9_17
https://doi.org/10.1109/DATE.2012.6176665
https://doi.org/10.1109/ElConRus51938.2021.9396489
https://doi.org/10.1109/ElConRus51938.2021.9396489


1 3

Optimization of multi‑class 0/1 knapsack problem on GPUs by…

	33.	 Ulm DR, Baker JW (1996) Solving a 2d knapsack problem on an associative computer augmented 
with a linear network. In: in Proc. of the International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, pp. 29–32

	34.	 Wang Q, Chu X (2020) Gpgpu performance estimation with core and memory frequency scaling. 
IEEE Trans Parallel Distrib Syst 31(12):2865–2881. https://​doi.​org/​10.​1109/​TPDS.​2020.​30046​23

	35.	 Wen H, Zhang W (2015) Exploring shared memory and cache to improve gpu performance and 
energy efficiency. In: Sixteenth International Symposium on Quality Electronic Design, pp. 402–
405. https://​doi.​org/​10.​1109/​ISQED.​2015.​70854​59

	36.	 Williams S, Waterman A, Patterson D (2009) Roofline: an insightful visual performance model for 
multicore architectures. Commun ACM 52(4):65–76. https://​doi.​org/​10.​1145/​14987​65.​14987​85

	37.	 Xiao S, Feng Wc (2010) Inter-block gpu communication via fast barrier synchronization. In: 2010 
IEEE International Symposium on Parallel Distributed Processing (IPDPS), pp. 1–12. https://​doi.​
org/​10.​1109/​IPDPS.​2010.​54704​77

	38.	 You Y, Zhang Z, Hsieh CJ, Demmel J, Keutzer K (2018) Imagenet training in minutes. In: Proceed-
ings of the 47th International Conference on Parallel Processing, ICPP 2018, pp. 1–10. Association 
for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​32250​58.​32250​69

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1109/TPDS.2020.3004623
https://doi.org/10.1109/ISQED.2015.7085459
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/IPDPS.2010.5470477
https://doi.org/10.1109/IPDPS.2010.5470477
https://doi.org/10.1145/3225058.3225069

	Optimization of multi-class 01 knapsack problem on GPUs by improving memory access efficiency
	Abstract
	1 Introduction
	2 Related work
	3 Background of GPUs
	4 The 01 knapsack problem
	4.1 Problem formulation
	4.2 Dynamic programming
	4.3 GPU implementation

	5 Approach
	5.1 Performance challenges
	5.2 Multi-class 01 knapsack problem
	5.3 DP reconstruction for MCKP
	5.4 GPU implementation
	5.5 Performance optimization

	6 Experiment evaluation
	6.1 Setup
	6.2 Performance scalability
	6.3 Grouping analysis
	6.4 GPU architecture comparison

	7 Conclusion
	Acknowledgements 
	References




